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Abstract

The stability of hybrid difference methods, where different schemes are used in different parts of the domain, is examined
for general schemes. It is shown that the energy method with the natural norm does not prove stability, but that the Kreiss
or ‘GKS’ theory yields sufficient criteria for stability. While the analysis is general, it is discussed primarily in the context of
hybrid schemes for shock/turbulence interactions, where a robust shock-capturing scheme is used around the discontinu-
ities and an efficient linear scheme is used in other regions. An example of two coupled schemes that are individually stable
yet unstable when coupled is given, showing that stability of hybrid methods is an important and non-trivial matter.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Hybrid numerical methods are becoming increasingly popular for problems where different physics are
important in different parts of the domain. The hybridization can take many different forms, some examples
of which include: the coupling of different codes to solve different underlying PDEs in different regions (say,
the compressible and incompressible Navier–Stokes equations); the use of grids with different topologies in
different regions (say, structured and unstructured grids); and the use of different numerical schemes in differ-
ent regions within the same code and PDE. The latter situation arises in the computation of flows with shock
waves, density interfaces, and turbulence, where one might use a computationally efficient and accurate linear
scheme in the turbulence regions and a more robust nonlinear shock-capturing scheme around the disconti-
nuities. These hybrid methods are typically implemented by using one scheme for x 6 0 and the other for
x > 0, say, where the interface location may depend on the instantaneous solution.

Ideally, a hybrid method combines the strengths of the individual methods being used, but accuracy and
stability at the interface between the schemes is an issue that must be resolved. Even when both schemes
are stable individually, there is no guarantee that the coupled method will be stable. One common class of
hybrid methods couples an ENO or WENO scheme [1] with a centered or upwinded linear scheme. Adams
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and Shariff [2] used the combination ENO/upwinded Padé and noticed small oscillations (noise) around the
interface. Later, Ren et al. [3] argued that the sharp transition from one scheme to the other is responsible for
the noise, and proposed an approach where the schemes are smoothly blended into each other over several
grid points. Hill and Pullin [4] argued that the noise around the interface can be minimized by forcing the opti-
mal WENO stencil to equal that of the linear scheme, thus avoiding or minimizing the change across the
interface.

In this paper, we analyze the stability characteristics of a general hybrid method using a linear model prob-
lem. The hybrid method is considered to consist of two arbitrary but different and linear consistent schemes.
Thus the analysis applies for problems where both the PDE and the potentially nonlinear shock-capturing
scheme are linearized.

The model problem will be defined in Section 2, and it will be shown that the energy method together with
the most natural choice of norm can not be used to prove stability. This does not imply that the energy method
categorically fails for this problem, since there are infinitely many energy norms that one could consider.

Thus we instead turn to the Kreiss theory [5,6] (sometimes referred to as ‘GKS’ theory) and give criteria for
which the Kreiss condition is satisfied, thus proving stability. Strikwerda [7] showed that the Kreiss condition
leads to stability in the generalized sense for semi-discrete problems. In [6] it was shown that strong stability
follows from the Kreiss condition under certain restrictions. The present analysis is somewhat similar to Gold-
berg and Tadmor [8], who used the Kreiss theory to prove stability of hyperbolic initial-boundary value prob-
lems for rather general schemes and boundary conditions. Ciment [9] analyzed a similar coupled problem
where both schemes are dissipative.

A few examples will be discussed, including one involving two schemes that are individually stable yet unsta-
ble when coupled. This illustrates that stability of hybrid methods is both an important and non-trivial matter.

2. Problem definition

Consider the hyperbolic half-space problem
ut þ ux ¼ 0; �1 < x <1; t P 0: ð1Þ
Note that while a scalar problem is analyzed here, the analysis applies equally to hyperbolic systems of form
qt þ Aqx ¼ 0; �1 < x <1; t P 0;
where A is a diagonalizable matrix. For such systems, the scalar model problem (1) represents each component
of the diagonalized system (cf. [8]).

To facilitate later discretization using different schemes coupled at x ¼ 0, the model problem can equiva-
lently be written on the folded form
uI
t ¼ uI

x; x P 0;

uII
t ¼ �uII

x ; x P 0;

uIð0; tÞ ¼ uIIð0; tÞ;
where
uðx; tÞ ¼
uIð�x; tÞ; x 6 0:

uIIðx; tÞ; x > 0:

�
ð2Þ
A sketch of the original and folded forms of the model problem is shown in Fig. 1. Discretization in space
yields
duI
j

dt
¼ 1

h

XrI

k¼�lI

aI
kuI

jþk; j ¼ 0; 1; . . . ; ð3aÞ

duII
j

dt
¼ � 1

h

XrII

k¼�lII

aII
k uII

jþk; j ¼ 1; 2; . . . ; ð3bÞ



Fig. 1. Sketch of the model problem in original (left) and folded (right) forms. The arrows and symbols indicate flow direction and
scheme.
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where faI;II
k g are the coefficients of the individual schemes, uI;II

j ðtÞ approximates uI;IIðhj; tÞ, and h is the uniform
grid spacing. The boundary conditions are
uI
j ¼ uII

�j; j ¼ �lI; . . . ; lII � 1: ð4Þ
The schemes are required to be consistent and the coefficients must satisfy
XrI;II

k¼�lI;II

aI;II
k ¼ 0; ð5aÞ

XrI;II

k¼�lI;II

kaI;II
k ¼ 1: ð5bÞ
One should note that, due to the opposite directions of the characteristics in the folded problem, the oper-
ation of switching schemes corresponds to the transformation aI

k ! �aII
�k; a

II
k ! �aI

�k (easily seen by splitting
the coefficients into symmetric and anti-symmetric parts). The inner product of two real functions u and v is
defined as
ðu; vÞ ¼ ðuI; vIÞI þ ðuII; vIIÞII ¼ h
X1
j¼0

uI
jv

I
j þ h

X1
j¼1

uII
j vII

j ; ð6Þ
with the norm kuk2 ¼ ðu; uÞ. Naturally, only solutions which satisfy kuk <1 are of interest.

2.1. The energy method

The natural norm defined in (6) is the perhaps most obvious choice of norm for a coupled problem, since
the interface is located in the interior of the domain. To show that the energy method can not be used to prove
stability in this norm, consider the specific combination ðaI

�1; a
I
0; a

I
1Þ ¼ ð�1=2; 0; 1=2Þ and ðaII

�1; a
II
0 ; a

II
1 Þ ¼

ð�1=2� a; 2a; 1=2� aÞ with lI;II ¼ rI;II ¼ 1. This corresponds to using a central scheme everywhere, but with
a dissipation term (with coefficient ah > 0) turned on suddenly for j > 0. Taking the inner product ðu; utÞ using
(3) yields
ðu; utÞ ¼ �
1

2
uI

0uI
�1 þ aþ 1

2

� �
uII

0 uII
1 þ 2a

X1
j¼1

uII
j uII

jþ1 � uII
j

� �
;

which with the boundary conditions becomes
dkuk2

dt
¼ 2auII

0 uII
1 þ 4a

X1
j¼1

uII
j uII

jþ1 � uII
j

� �
:

For stability one would require the norm growth rate to be bounded independently of the grid spacing h,
i.e. kuk2

t 6 Ckuk2 for some constant C. However, it is trivial to find grid functions uj (where uj is defined in
analogy with (2)) where this is not the case. Take for example ðuII

0 ; u
II
1 Þ ¼ ð1; 1=4Þ and all remaining values

equal to zero. This yields
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dkuk2

dt
¼ a

4
;

kuk2 ¼ 17h
16

;

and hence the energy estimate must have C !1 as h! 0. Interestingly, the energy growth rate for this par-
ticular grid function increases with increasing dissipation.

The energy method with the natural norm shows that there are solutions that grow over short times (in this
norm), but this does not imply that the method is unstable. This situation is common with the energy method
and is related to the fact that it, essentially, considers the symmetric part of the discretization matrix only,
rather than the matrix itself. The example provided here yields a discretization that is neither symmetric
nor anti-symmetric close to the interface, and is such that the symmetric part has eigenvalues with positive
real part despite the method actually being stable.

For the simple example used here, a norm with different weights for the I and II parts could most likely be
used to prove stability, but for more complex and general schemes it is not trivial to find the appropriate norm.
The Kreiss theory [5,6] does not have this drawback.
3. The Kreiss theory

The Kreiss theory [5,6] finds an energy estimate by use of Laplace transforms in time, and hence it considers
normal modes of form uI

j ¼ ûj expðstÞ and uII
j ¼ v̂j expðstÞ. Inserting into (3) yields two constant-coefficient dif-

ference equations with solutions of form ûj � jj and v̂j � lj where j and l are roots of the characteristic equa-
tions (cf. [6])
~s ¼
XrI

k¼�lI

aI
kj

k; ð7aÞ

~s ¼ �
XrII

k¼�lII

aII
k lk; ð7bÞ
where ~s ¼ sh. Stability is ensured if the Kreiss condition is satisfied, which amounts to verifying that there is no
combination of ~s, j, and l that satisfies the characteristic equations and the boundary conditions for Re~s P 0.
One important but subtle point in the Kreiss theory is that the line Re~s ¼ 0 (in the complex plane) is
investigated as the limit Re~s! 0þ (from the right half-plane). Thus conditions at Re~s > 0 determine which
roots j; l to keep in the analysis (to satisfy kuk <1) as well as the form of ûj; v̂j (distinct or multiple roots
j; l).

The main technical difficulty in the present application is the handling of any multiple roots j or l. The
analysis will therefore be presented in two segments. First, the roots will be assumed to be distinct, and the
stability criteria will be derived. Thereafter, the multiple roots will be found, and it will be verified that they
do not alter the stability conclusion.

3.1. Preliminaries

We only consider schemes that are stable for the Cauchy problem (individually). Thus solutions to (7) must
have Re~s 6 0 for j ¼ expðihÞ, l ¼ expðihÞ, h 2 ½0; 2pÞ. We consider schemes for which Re~s < 0; h 6¼ 0, to be
dissipative, and schemes for which Re~s ¼ 0; h 2 ½0; 2pÞ, to be non-dissipative. Note that stability of the Cauchy
problems implies that there are no roots j or l on the unit circle for Re~s > 0.

One useful and well-known result (cf. [6]) is the number of roots that satisfy jjj; jlj < 1, i.e. kuk <1. Con-
sider the characteristic equation (7a) for j. Dividing by Re~s > 0 yields
~s
Re~s
¼
X0

k¼�lI

aI
k

Re~s
jk þ

XrI

k¼1

aI
k

Re~s
jk ¼ P�ðj;~sÞ þ Pþðj;~sÞ: ð8Þ
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For roots satisfying jjj > 1
jP�ðj;~sÞj 6
X0

k¼�lI

jaI
kj

Re~s
jjjk <

X0

k¼�lI

jaI
kj

Re~s
;

while j~sj=Re~s P 1. Thus for any given set of coefficients faI
kg, P� ! 0 as Re~s!1, and (8) then has exactly rI

roots outside the unit circle in this limit. Since the roots are continuous functions of ~s, and since there are no
roots on the unit circle for Re~s > 0, this implies that (7a) has rI roots outside the unit circle for any ~s with
Re~s > 0. Consequently, there are lI roots inside the unit circle. Similarly, there are lII roots of (7b) with
jlj < 1. Note that the total number of roots equals the number of boundary conditions (4). Note also that
j ¼ 0 is not a root, since if lI ¼ 0 there are no roots inside the unit circle, and if lI > 0 then (7a) shows that
j ¼ 0 is not a solution for any fixed ~s. Similarly, l ¼ 0 is not a root.

Finally, we point out that the fact that there are lI; lII roots inside the unit circle implies that schemes with
lI; lII 6 1 must necessarily have only distinct roots.

3.2. Distinct roots

For values of ~s where the characteristic equations (7) have distinct roots, the solutions can be written as:
ûj ¼
XlI

m¼1

rmjjþlI
m ;

v̂j ¼ �
XlII

m¼1

smlj�lI ;
where rm and sm are some constants. Inserting this into the boundary conditions ûj � v̂�j ¼ 0; j ¼ �lI; . . . ;
lII � 1, yields
XlI

m¼1

rmjjþlI
m þ

XlII

m¼1

sml�j�lI ¼ 0; j ¼ �lI; . . . ; lII � 1;
which can be written on matrix form Jq ¼ 0 with q ¼ ðr1; . . . ; rlI
; s1; . . . ; slII

Þ and
J ¼

1 . . . 1 1 . . . 1

j1 . . . jlI
l�1

1 . . . l�1
lII

..

. ..
.

jlIþlII�1
1 l�lI�lIIþ1

lII

0
BBBBB@

1
CCCCCA:
This is a van der Monde matrix with determinant
det J ¼
Y
i<j

ðgi � gjÞ; gi ¼
ji; i 6 lI:

l�1
i�lI
; i > lI:

(

Since the roots are distinct, there is a non-trivial solution only if ji ¼ l�1
j for some i and j. The requirement of

a finite solution kuk <1 for Re~s > 0 implies that jjj; jlj < 1, and hence there is no non-trivial solution with
distinct roots for Re~s > 0, and the Godunov–Ryabenkii condition (which is necessary for stability, cf. [6]) is
satisfied for the distinct roots (it remains to be verified that it still holds when the multiple roots are taken into
account).

The sufficient condition for stability (the Kreiss condition) is that det J 6¼ 0 holds for Re~s ¼ 0. To find any
possible roots that would yield det J ¼ 0, suppose j ¼ l�1 ¼ expðihÞ, h 2 ½0; 2pÞ, and Re~s ¼ 0. Note that this
supposition includes roots approaching the unit circle both from the inside and outside. Inserting into the
characteristic equations (7) yields
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XrI

k¼�lI

aI
k cosðkhÞ ¼ 0; ð9aÞ

XrII

k¼�lII

aII
k cosðkhÞ ¼ 0; ð9bÞ

XrI

k¼�lI

aI
k sinðkhÞ �

XrII

k¼�lII

aII
k sinðkhÞ ¼ 0; ð9cÞ
where the real and imaginary parts have been separated. We must now eliminate those roots j and l that ap-
proached from outside the unit circle. How a root approached the unit circle can be determined by considering
the small perturbations ~sþ d, ð1þ ejÞj, and ð1þ elÞl, for real d > 0. Note that j and l are the roots corre-
sponding to d ¼ 0, and that only roots j for which ej < 0 and l for which el < 0 should be included in the
analysis. With the Taylor expansion ð1þ eÞk � 1þ ke this yields
0 < d � �~sþ
XrI

k¼�lI

aI
kð1þ kejÞjk ¼ ej

XrI

k¼�lI

kaI
keikh; ð10aÞ

0 < d � �~s�
XrII

k¼�lII

aII
k ð1þ kelÞlk ¼ �el

XrII

k¼�lII

kaII
k e�ikh: ð10bÞ
We now note the following, pending investigation of any multiple roots:

(1) h ¼ 0, i.e. j ¼ l ¼ 1, ~s ¼ 0, is always a solution of (9) due to the first consistency requirement (5a). The
second consistency requirement (5b) together with (10a) shows that j always approaches from outside
the unit circle. Later it will be shown that h ¼ 0 is always a distinct root, and hence this root does not
cause instability.

(2) If either scheme is dissipative such that Re~s < 0 for h 6¼ 0, then there are no other roots, and the Kreiss
condition is satisfied (pending any multiple roots). Schemes with lI; lII 6 1 have no multiple roots, and
thus they are stable when coupled if at least one scheme is dissipative. This proves stability for the simple
example in Section 2.1, and extends the result of Ciment [9] who proved stability for the case of both
schemes being dissipative.

(3) If both schemes are non-dissipative, then (9a) and (9b) are satisfied for all h 2 ½0; 2pÞ. Orthogonality of
the trigonometric functions implies that aI;II

k ¼ �aI;II
�k , i.e. that both schemes are centered and anti-sym-

metric. For such schemes, (10) yields
d � 2ej

XrI

k¼1

kaI
k cosðkhÞ;

d � �2el

XrII

k¼1

kaII
k cosðkhÞ:

ð11Þ
For this situation, (9c) must be solved for the specific schemes in question to find all roots h. For each
such root, (11) must then be evaluated to verify that at least one of j or l approaches the unit circle from
the outside and thus can be discarded.

(4) The direction of the coupling may affect the stability for two non-dissipative schemes. Eqs. (9) are all
invariant under the transformation aI

k ! �aII
�k, aII

k ! �aI
�k, which implies that the roots h are

unchanged. If there exists a root h for which ej and el have the same sign, then the hybrid method is
only stable when coupled in the direction for which both roots approach from outside the unit circle.

At this stage, before having considered any multiple roots, there are essentially two situations. First, if at
least one of the schemes is dissipative then the Kreiss condition is guaranteed to be satisfied. This is likely
the most natural situation in hybrid methods for shock/turbulence interactions, where many popular nonlinear
shock-capturing schemes (like ENO and WENO) are designed to become upwind-biased in response to features
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in the solution. In fact, the standard ENO/WENO schemes are upwind-biased even in their optimal stencils.
The second situation is that of neither scheme being dissipative, and thus both being centered and anti-symmet-
ric. One case where this could happen is where schemes of different accuracy are used in different parts of the
domain. In this case there is no guarantee that the Kreiss condition is satisfied, and one must verify that there
are no roots j ¼ l�1 for which both j and l approach from inside the unit circle.

3.3. Multiple roots

For the distinct roots the solutions ûj and v̂j are of a form that yields a van der Monde matrix with a
particularly suitable expression for the determinant, and this fact greatly simplified the analysis for that
case. For values of ~s that yield multiple roots j and/or l, one or both of ûj and v̂j takes a different form
which does not yield a van der Monde matrix. Thus a general analysis is difficult for this case, and one must
resort to verifying det J 6¼ 0 by setting up a suitable form of the solution and computing the determinant.
This only needs to be done for a limited number of multiple roots, and hence the added work is not exces-
sive in practice.

To find all multiple roots, first multiply the characteristic equation (7a) by jlI and take the derivative with
respect to j as
~sjlI ¼
XrI

k¼�lI

aI
kj

kþlI ;

lI~sjlI�1 ¼
XrI

k¼�lIþ1

ðk þ lIÞaI
kj

kþlI�1:
For fixed ~s, any multiple root j must satisfy both these equations. Eliminating ~s and repeating for l yields the
equations for the multiple roots for all ~s
XrI

k¼�lI

kaI
kj

kþlI ¼ 0; ð12aÞ

XrII

k¼�lII

kaII
k lkþlII ¼ 0: ð12bÞ
These equations are to be considered for Re~s P 0. Note that, if Re~s ¼ 0 and jjj ¼ 1, then ûj should only have
a different form if more than one of the multiple roots approached the unit circle from the inside (and similarly
for l and v̂j).

Below are three examples which illustrate the application of the Kreiss theory. Special attention is paid to
the handling of the multiple roots.

3.4. Example 1: coupled central 2nd and 4th order schemes

Consider the case with aI
1 ¼ 1=2, ðaII

1 ; a
II
2 Þ ¼ ð2=3;�1=12Þ and aI;II

k ¼ �aI;II
�k , i.e. a region with a 2nd order

central scheme coupled to a region with a 4th order central scheme. First we consider the distinct roots.
Eq. (9c) has the solutions h ¼ 0; p. The first one has already been covered, and for the second one we have
j ¼ l ¼ �1. Inserting into the perturbations (11) yields ej � �d < 0 and el � 3=5d > 0. Thus l approaches
from the outside and can be discarded.

Now consider the multiple roots. For j, we know that there are no multiple roots since only lI ¼ 1 roots
reside inside the unit circle for Re~s > 0. For l, (12b) yields multiple roots l � 4:2121;�0:2247� 0:9744i;
0:2374, with associated ~s � �1:1760;�1:3722i; 1:1760. The first is outside the unit circle and can be discarded.
The next two have Re~s ¼ 0, and thus we perturb as ~sþ d and solve the characteristic equation (7b) for the
displaced roots. The perturbation causes each double root to separate into two distinct roots, with one going
outside the unit circle, and thus the proper form of the solution is not altered. The final multiple root
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l � 0:2374 is inside the unit circle and Re~s > 0. Thus we need to set up a different form of the solution for this
value of ~s � 1:1760 as
v̂j ¼ �s1l
j�lI � s2ð�jþ lI þ 1Þlj�lI ;
which yields a boundary condition matrix
J ¼
1 1 1

j l�1 2l�1

j2 l�2 3l�2

0
B@

1
CA;
where j � �0:3677 from (7a). Evaluating the determinant yields det J 6¼ 0, and thus this multiple root does
not cause instability. Overall, we conclude that the Kreiss condition is satisfied and that the coupled scheme
is stable.

This example shows the typical application of the stability analysis, in that the half-plane Re~s P 0 is first
covered by supposing the roots to be distinct, and then a few multiple roots are considered to verify that they
do not alter the analysis. Note that the perturbation analysis is different in the two cases: for the distinct roots
it is a matter of determining whether the root should be included in the analysis at all, whereas for the multiple
roots it is a matter of determining whether a different form of the solution is needed.

We also note that (9c) is in fact a relation between the modified wavenumbers of the different schemes. The
exact derivative of a function uj ¼ expðikxjÞ is ikuj. Analogously, the difference approximation of the derivative
is ik0uj, where k0 is the modified wavenumber. Introducing the notation H ¼ k0h, this is defined for anti-sym-
metric schemes as
HI;IIðhÞ ¼ 2
XrI;II

k¼1

aI;II
k sinðkhÞ: ð13Þ
Thus Eq. (9c) can be written as
HIðhÞ ¼ HIIðhÞ
for non-dissipative schemes, with roots h where the modified wavenumbers are equal. Many standard central
schemes of different order have everywhere different modified wavenumbers, and therefore no roots other than
h ¼ 0; p, where it must be verified whether the h ¼ p root is permissible or not. When coupling non-standard
central schemes, e.g. those where the coefficients are determined by some optimization criterion, there may be
additional roots h that need investigation.

The connection with the modified wavenumber was noted by Trefethen [10], who interpreted the Kreiss the-
ory in terms of the group velocity of the difference scheme near the boundary. The group velocities with the
present notation are
vI
g ¼ �

dHI

dh
;

vII
g ¼

dHII

dh
:

Taking the derivative of (13) yields
vI
g ¼ �2

XrI

k¼1

kaI
k cosðkhÞ � � d

ej
;

vII
g ¼ 2

XrII

k¼1

kaII
k cosðkhÞ � � d

el
;

where the relation to the perturbations stems from (11). Therefore a positive group velocity implies that the
corresponding root approached the unit circle from the inside. The next example brings out this connection
more clearly.
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3.5. Example 2: coupled central schemes with stability in only one direction

Consider the coupling of the standard 8th order central scheme given by ðaI
1; a

I
2; a

I
3; a

I
4Þ ¼ ð4=5;�1=5;

4=105;�1=280Þ to the ‘optimized’ scheme ðaII
1 ; a

II
2 Þ ¼ ð0:81;�0:155Þ, and aI;II

k ¼ �aI;II
�k . The second scheme here

is not standard, but representative of schemes where the coefficients are chosen partly to increase the range of
resolved wavenumbers. While the coefficients used here are chosen to illustrate an aspect of stability, we note
that optimized schemes are popular in several areas, including acoustic wave propagation and large eddy sim-
ulation. Note that the scheme is consistent and second order accurate.

The modified wavenumbers given by (13) for the two schemes are shown in Fig. 2. We first note that the
optimized scheme used here is by no means unreasonable, in fact its modified wavenumber is somewhat similar
to the 8th order scheme with better resolution of the medium wavelength modes than the standard 4th order
central scheme (not shown). The figure shows that the modified wavenumbers are equal for h ¼ 0; hr; p, where
hr � 1:938. Thus these are the roots of (9c), along with �hr by anti-symmetry. The perturbations (11) become
d=ej � ð0:22;�2:7; 0:22Þ and d=el � ð0:12; 2:2; 0:12Þ for ðhr; p;�hrÞ. Thus the l roots approach from the out-
side and can be discarded, and the scheme is stable pending investigation of the multiple roots.

Solving (12) yields two multiple roots j on the unit circle, two multiple roots l on the unit circle, and one
multiple root l � 0:3466 with ~s � 0:7846. All four roots on the unit circle separate in/outside when perturbed,
but the final root needs to be considered. Solving (7a) for this ~s yields ðj1; j2; j3;4Þ � ð�0:7524; 0:1314;
0:0513� 0:1591iÞ. Thus we set up a new form of the solution v̂j as above and find the boundary condition
matrix
Fig. 2
dotted
J ¼

1 1 1 1 1 1

j1 j2 j3 j4 l�1 2l�1

j2
1 j2

2 j2
3 j2
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2 j5
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4 l�5 6l�5
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BBBBBBBB@

1
CCCCCCCCA
: ð14Þ
This determinant is non-zero, and thus this multiple root does not cause instability. We then conclude that the
hybrid scheme is stable when coupled in the direction 8th order ? optimized scheme. Note that the direction
of the coupling is defined here in relation to the direction of propagation in the model problem (1).

Now consider the opposite direction of coupling, i.e. let aI
k ! �aII

�k and aII
k ! �aI

�k. The perturbations then
become d=ej � ð�0:12;�2:2;�0:12Þ and d=el � ð�0:22; 2:7;�0:22Þ for ðhr; p;�hrÞ. Thus the roots �hr

approach from inside the unit circle, and the coupled scheme is unstable in this direction of coupling, i.e.
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for optimized ? 8th order scheme. There is then no need to check the multiple roots (although none satisfies
the boundary condition, and thus does not cause instability).

To illustrate this situation, the model problem (1) is solved on a domain x 2 ½0; 1� with N þ 1 points and
grid spacing h ¼ 1=N . The interface is located at xint ¼ 0:7, and the initial condition is taken as
Fig. 3.
unstab
time fo
ujð0Þ ¼ Rj exp �6
xj � xint

5h

� �2
� �

; j ¼ 0;�1;�2; . . . ; ð15Þ
where uj is defined in analogy with (2) and Rj 2 ð�1; 1Þ is a uniformly distributed random number. This initial
condition excites all modes and is highly localized around the interface. The solution is integrated in time using
the trapezoidal rule with a time step small enough such that the temporal discretization has negligible effect on
the solution (CFL number of 0.05). To approximate a Cauchy problem, the temporal integration is halted
when the solution near the boundaries becomes larger than 10�8 in magnitude.

Fig. 3(a) shows the growth of the solution norms for both the stable (8th order ? optimized) and unstable
(optimized ? 8th order) configurations. The growth for the unstable configuration increases as the grid is
refined, in fact the curves collapse if plotted versus t=h instead (not shown). The growth approximately pro-
portional to t=h shows that the scheme is unstable, and hence the numerical experiment confirms the theory.
The stable configuration yields a roughly constant norm and is stable, as predicted by the theory.

One note on the initial condition is in order. Since the unstable mode is known in this case, this mode could
have been used as the initial condition instead. Doing so results in qualitatively similar results, albeit with lar-
ger values for kuk. The random initial condition was used here to excite all possible modes.

The solutions after a long time on the finest grid are shown in Fig. 3(b). While both solutions are highly
inaccurate with large spreading of numerical noise in both directions, the figure still shows the essential dif-
ference between the two coupling configurations. The stable configuration shows the noise propagating away
from the interface at the wavenumber-dependent group velocity of the schemes, but there is little or no gen-
eration of new noise around the interface. The unstable configuration, on the other hand, displays continuous
generation of energy around the interface, leading to a growing norm.

At this point we recall Trefethen’s [10] interpretation of the Kreiss theory in terms of the numerical group
velocity discussed above. The modified wavenumbers HI;II in Fig. 2 of the different schemes have opposite
slopes at the point ðhrÞ where they intersect, which then implies that both the group velocities vI;II

g and the per-
turbations ej; el have the same signs for that wavenumber. The unstable configuration is that for which the
roots approach from the inside and therefore vI;II

g > 0. This enables transport of any energy generated at
the interface into the rest of the domain.
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3.6. Example 3: coupled identical schemes

As a final example we consider the special case of coupling identical non-dissipative schemes. While artifi-
cial, this special case illustrates some of the subtleties in the Kreiss theory.

Consider aI
1 ¼ aII

1 ¼ 1=2 and aI;II
k ¼ �aI;II

�k . Thus the coupled problem is really just a standard Cauchy prob-
lem, and we know that it is stable. Following instead the analysis of the Kreiss theory, we first note that there
are no multiple roots since lI;II ¼ 1. For the distinct roots, every h 2 ½0; 2pÞ solves (9). The perturbations (11)
become
d � ej cos h;

d � �el cos h:
Thus the roots approach from different sides for h 6¼ p=2; 3p=2, but for those two values the first order per-
turbation is insufficient. A more careful calculation shows that it is possible to perturb the roots such that both
approach from inside the unit circle as Re~s! 0þ. This implies that these roots correspond to generalized
eigenvalues for Re~s ¼ 0, and thus that the Kreiss condition is not satisfied – but we know that the scheme
is stable by considering the case as a Cauchy problem.

The Kreiss condition is thus a little too strong for this special case. The Kreiss condition guarantees that an
estimate of the solution is obtained in terms of arbitrary but bounded boundary data gðtÞ. If one of the con-
ditions in (4) is modified to uI

j ¼ uII
�j þ gðtÞ, we can rewrite it as an extra forcing term proportional to gðtÞ=h in

the original difference scheme, and an estimate in terms of jgðtÞj should not be expected. Trefethen [10] con-
sidered a similar special case which is stable in the l2-norm yet does not satisfy the Kreiss condition. A thor-
ough discussion along with a different example is given in section 12.5 of [6].

3.7. Solution bound

Having found the conditions for which the Kreiss condition is satisfied, the Kreiss theory provides bounds
on the solution that prove stability. There are two cases.

If neither scheme is dissipative, then lI ¼ rI, lII ¼ rII, and both schemes are semibounded for the individual
Cauchy problems (by their anti-symmetry). Then Theorem 12.2.3 of [6] asserts that the approximation is
strongly stable, i.e. that, for smooth initial data
kuðtÞk 6 Keatkuð0Þk;
where the discrete solution uj is defined in analogy with (2).
If either scheme is dissipative, then (without the requirements of semiboundedness and the conditions on

lI;II and rI;II) Theorem 12.4.4 of [6] asserts that the approximation is strongly stable in the generalized sense,
i.e. that, for smooth initial data,
Z 1

0

e�gtkuðtÞkdt 6 KðgÞkuð0Þk;
for all g > g0, and KðgÞ ! 0 as g!1.

3.8. Application to a nonlinear problem

The analysis presented here is restricted to linear problems and schemes, but many applications of scientific
interest are nonlinear both in the underlying PDE and the numerical method. One commonly used test prob-
lem is the one-dimensional shock/entropy interaction problem devised by Shu and Osher [1]. The Euler equa-
tions for a perfect gas with gas constant c ¼ 1:4 are solved on a domain x 2 ½�5; 5� using a uniform grid with
spacing h ¼ 10=200. The initial condition is
ðq; u; pÞ ¼
ð3:857; 2:629; 10:333Þ; x < �4;

ð1þ 0:2 sinð5xÞ; 0; 1Þ; x P �4;

�
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Fig. 4. Instantaneous velocity (solid) for a train of moving shocks. Hybrid WENO/central difference algorithm, where circles denote
points treated by WENO and crosses denote points treated by the central scheme.
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where ðq; u; pÞ are the density, velocity, and pressure, respectively. From this initial condition, the main shock
travels to the right and interacts with the density field. This generates acoustic and entropy waves, where the
acoustic waves steepen into weaker shocks as time progresses. A hybrid method which uses an 8th order
central scheme away from the shocks and a 7th order WENO scheme [11] around the shocks is used. A solu-
tion-adaptive sensor taken from [4] is used to find those grid points where the WENO scheme should be
applied.

Applying the Kreiss theory to this problem amounts to finding multiple roots, since the WENO scheme is
dissipative in its linearized stencil. There are only three multiple roots in each coupling direction, and none
yield a singular determinant. Thus the hybrid method is linearly stable.

The solution at t ¼ 1:8 is shown in Fig. 4, at which time there are five regions of WENO points, and hence
ten interfaces where the schemes are coupled. Despite the strongly nonlinear nature of the problem, the rather
low resolution, and the frequent switching between the different schemes, no noise around the interfaces is vis-
ible. This suggests that the stability characteristics may carry over to nonlinear problems as well.
4. Summary and discussion

The case of hybrid finite difference methods, where different schemes are applied in different regions of the
domain, is investigated from a stability perspective. The Kreiss theory [5,6] is used to analyze stability for gen-
eral linear schemes of arbitrary order and stencil size. The analysis consists of two separate parts, where a lim-
ited number of potential multiple roots must be examined individually, whereas the remainder of the half-
plane Re~s P 0 can be handled by finding points where the modified wavenumbers of the two schemes are
equal. Since schemes with lI;II 6 1, i.e. with only one point extending across the interface, can not have any
multiple roots, the different cases discussed in Section 3.2 become sufficient conditions for stability.

The only assumptions involved are that both schemes are consistent and stable for the Cauchy problem
(individually). An example involving an ‘optimized’ scheme is shown to be stable only for one coupling direc-
tion, thus showing that the issue of stability for hybrid difference methods is non-trivial and can not be taken
for granted.

It is also shown that the energy method with the most natural norm does not prove stability for the cou-
pled problem. While there may exist norms for which an energy estimate could be found, this was not pursued
here. The result from the analysis with the energy method is interesting in the context of numerical noise
around the interface. Even stable methods may generate transient growth of disturbances, and thus the
appearance of numerical noise around the interface seen and/or discussed in [2–4] is not surprising. The pres-
ent stability proof shows that, for linearized problems, the numerical noise is transient and does not affect the
stability.
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